Urea metal-organic frameworks as effective and size-selective hydrogen-bond catalysts.

نویسندگان

  • John M Roberts
  • Branden M Fini
  • Amy A Sarjeant
  • Omar K Farha
  • Joseph T Hupp
  • Karl A Scheidt
چکیده

A new urea-containing metal-organic framework (MOF) was synthesized to act as a heterogeneous catalyst. Ureas are well-known for self-recognition and aggregation behavior, resulting in loss of catalytic competency. The catalyst spatial isolation achievable in a porous MOF environment suggests a potentially general solution. The combination of a symmetrical urea tetracarboxylate strut, 4,4'-bipyridine, and Zn(NO(3))(2)·6H(2)O under solvothermal conditions afforded a new microporous MOF (NU-601). This material is indeed an effective hydrogen-bond-donor catalyst for Friedel-Crafts reactions between pyrroles and nitroalkenes, whereas a homogeneous urea is much less competent. The higher rates of reaction of small substrates relative to larger ones with NU-601 strongly suggest that catalysis primarily occurs within the pores of this new material rather than on its exterior. To the best of our knowledge, this approach is the first example of specific engineering of successful hydrogen-bonding catalysis into a MOF material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Base free transfer hydrogenation using a covalent triazine framework based catalyst

Transfer hydrogenation (TH) reaction – the addition of hydrogen to an unsaturated group of an organic molecule from a source other than H2 – has been gaining a lot of attention as it is an appealing alternative to direct hydrogenation. The reasoning behind it is the elimination of pressurised hydrogen and high pressure equipment use. Besides, a conventional hydrogenation catalyst is rarely sele...

متن کامل

Novel Porous Iron Molybdate Catalysts for Synthesis of Dimethoxymethane from Methanol: Metal Organic Frameworks as Precursors

As a novel performance, methanol gas conversion to dimethoxymethane (DMM) in one-step based on Fe-Mo-O (iron molybdate mixed oxides) catalysts with high surface area fabricated by metal organic frameworks (MOFs) precursors was improved. For this approach, at first, Fe(III) precursors (iron (III) 1,3,5-benzenetricarboxylate (MIL-100 (Fe) and iron terephthalate (MOF-...

متن کامل

Cyclohexane selective oxidation over metal-organic frameworks of MIL-101 family: superior catalytic activity and selectivity.

Mesoporous metal-organic frameworks Cr- and Fe-MIL-101 are highly efficient, true heterogeneous and recyclable catalysts for solvent-free selective oxidation of cyclohexane with molecular oxygen and/or tert-butyl hydroperoxide under mild conditions.

متن کامل

Metal-organic framework materials as nano photocatalyst

Photocatalytic degradation of toxic organic compound in water, soil and air by semiconductor catalysts such as TiO2 and ZnO have received much attention over the last two decades. However, the low quantum yield, easy agglomeration and difficult post-separation of these inorganic catalysts limit their application for large-scale applications. Metal-organic frameworks (MOFs) are the latest class ...

متن کامل

Metal-organic framework materials as nano photocatalyst

Photocatalytic degradation of toxic organic compound in water, soil and air by semiconductor catalysts such as TiO2 and ZnO have received much attention over the last two decades. However, the low quantum yield, easy agglomeration and difficult post-separation of these inorganic catalysts limit their application for large-scale applications. Metal-organic frameworks (MOFs) are the latest class ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 7  شماره 

صفحات  -

تاریخ انتشار 2012